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Article Info ABSTRACT

This study assesses the systemic stability of the fintech lending
ecosystem by linking three analytical pillars: (i) a multilayer network of

Keywords: linkages  (platform-investor-custodian ~ bank-payment  rails-data
Systemic  Stability of Fintech providers), (i) liquidity risk through the Liquidity-at-Risk (LaR)
Lending,  Multilayer  Network framework, and (iii) a flow-based macroprudential policy evaluation (e.g.,
Financial, Platform Run Index dynamic cash buffers and circuit breakers). We construct a network map

of bipartite investor-platform exposures, platform-custodian bank
linkages, and dependencies on payment rails, then calculate
concentration and centrality metrics, as well as investor overlap across
platforms. Next, we estimate daily LaR (14-day horizon, a=99%) from
cash-in/out, settlement, and disbursement flows, and develop the
Platform Run Index (PRIl)-a nowcasting indicator that combines
redemption pressure, settlement queue length, pricing spread deviation,
and operational stress. Contagion dynamics are measured by loss
propagation from platforms to banks/rails based on an exposure matrix,
while policy effectiveness is identified using stepwise Difference-in-
Differences and event studies on staggered rollouts of liquidity rules. The
main results show that funding concentration (high HHI) and reliance on
a few banks/rails increase loss amplification and potential spillover to
banks. LaR peaks with a surge in cash-outs and settlement queues,
marking a run-prone zone even without a significant increase in defaults.
PRI exceeding the p90 threshold predicts a spike in withdrawals the
following day, making it a suitable trigger for adaptive policy. Agent-
based simulations show that funding shocks and operational outages
increase run probabilities and lengthen queues, and—when combined—
result in material loss amplification. Causal evaluations show that the
combination of dynamic cash buffers and flow-based circuit breakers
significantly lowers PRI, reduces LaR violations, shortens queues, and
mitigates early contagion. The implication is that systemic resilience in
fintech lending requires diversified escrow and rail systems, real-time
PRI-based monitoring, multilayer stress testing (LaR + ABM) with
periodic  backtesting, and operational resilience standards
(SLA/latency/failover). These findings support the design of dynamic,
flow-based macroprudential policies to balance innovation, inclusion,

and stability.
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INTRODUCTION
The fintech lending (P2P/marketplace lending) boom has shifted the credit
intermediation architecture from a bank balance sheet-based model to a balance-sheet-
light platform that connects retail/institutional lenders with borrowers through risk-based
pricing algorithms and alternative data. This shift expands credit access and accelerates
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fund disbursement, but simultaneously creates a new constellation of risks not yet fully
covered by traditional bank regulatory perimeters: (i) two-sided liquidity risk—funding run
on the lender side and drawdown/rollover risk on the borrower side; (ii) multilayer network
dependencies linking platforms-custodian banks-payment rails-data providers; (iii) pro-
cyclicality due to interest rate setting and credit scoring algorithms that are sensitive to
high-frequency market signals; and (iv) indirect contagion through overlapping investors,
sector/region concentration, and fire-sale externalities when platforms simultaneously
increase haircuts or close financing channels. In such an ecosystem, small shocks—such
as a spike in sector-specific defaults, a data security issue, or a settlement disruption—
can spread rapidly through interconnected pathways that are invisible to individual
balance sheets, but material at the system level.

Research gap.

Existing literature still focuses on consumer protection and idiosyncratic credit risk
(default) in fintech lending, while systemic dimensions—particularly network-based
contagion mechanisms and cross-layer liquidity dynamics—are relatively neglected,
especially in the context of developing countries with high digital penetration but limited
financial market depth. Measurements of linkages are generally single-layer (e.g., only
investor-borrower loans) and rarely incorporate inter-platform networks and banking
relationships (escrow accounts, warehouse lines, credit enhancements). Furthermore,
causal evaluations of the effectiveness of platform-specific macroprudential policies—
such as liquidity buffers, maturity-mismatch caps, flow-based circuit breakers, or
countercyclical add-ons to risk weights—remain limited, and few studies utilize high-
frequency transaction data for nowcasting liquidity pressures and quantifying second-
round effects on banks (e.g., massive withdrawals from escrow accounts that impact a
particular bank's cash flow).

Research contributions.

This study (1) builds a multilayer fintech lending network map that integrates the credit
layer (investor-borrower), funding & custodian layer (platform-bank/escrow),
payment/settlement layer (gateway, switching), and information layer (credit bureau/alt-
data), to measure interconnectedness, concentration, and overlap using centrality, k-
core, and overlapping exposure indices; (2) designs a Liquidity-at-Risk (LaR) framework
for the platform that links cash inflows/outflows, early redemption, and performance
triggers with agent-based micro-foundations run dynamics thresholds; (3) integrates a
network liquidity stress test with a contagion model (propagation via common lenders
and shared banks) to estimate cross-layer loss amplification; and (4) conducts
macroprudential policy evaluations through quasi-experiments (e.g., staggered policy
rollout, limit changes, fee caps) and simulated policy counterfactuals to assess the trade-
off between system resilience and credit access/cost.

Research novelty.

The key novelty lies in the full integration of multilayer network modeling and agent-based
liquidity stress tests calibrated on high-frequency data (daily transactions, cash-
in/outflows, settlement windows), thus capturing non-linearities and tipping points in
investor run behavior. This study also introduces the Platform Run Index (PRI)—a real-
time composite indicator that combines lead indicators (redemption spikes, queue length,
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pricing spread deviation, and API outage metrics)—for nowcasting liquidity stress and
triggering flow-based macroprudential circuit breakers (e.g., temporary slowdowns in
disbursement flows or dynamic minimum cash buffers). Unlike previous single-layer or
static approaches, our framework incorporates platform-bank-payment linkages to map
spillovers to banks (liquidity of current accounts/savings accounts at custodian banks)
and feedback to platform pricing. Thus, this study provides an operational, systemic
measurement tool and evidence for designing macroprudential policies specifically for
fintech lending that balance resilience, innovation, and financial inclusion.

METHODS

Research Design

A quantitative multi-method approach that combines:

e Multilayer network modeling(platform-investor-borrower-custodian bank-payment
rails-data providers).

o Liquidity stress testbased on Liquidity-at-Risk (LaR) at the platform level.

e Agent-based simulation(ABM) for funding run dynamics and rollover risk.

e Contagion model(propagation via overlapping exposures and shared
banks/payment nodes).

e Causal evaluation of macroprudential policies(Stepwise DID + event study; RDD/IV
validation if relevant).

e Nowcasting liquidity pressurevia Platform Run Index (PRI).

Unit of analysis: fintech lending platforms (and related nodes) at daily (main) +

monthly/quarterly (macro & complementary controls) frequencies.

Data Sources & Integration

1. Platform transaction data (daily):loan disbursement, installments/repayments,
default (DPD bucket), early redemption (if any), order book, rate spread,
disbursement/withdrawal queue, haircut/fee changes.

2. Escrow/custodian cash flow (daily):cash-in/out, daily balance per custodian bank,

settlement windows, queue.

Payment rails (daily):gateway/switch interference, latency/outage metrics.

4. |Investor & borrower data (aggregated/anonymized):concentration of top 10/50
investors, cross-platform overlap, sector/region composition.

5. Macro & finance (daily-monthly):policy interest rates, money market volatility,
sentiment index, risk-off proxies.

6. Policy/regulator (timestamped):changes to liquidity buffer, maturity-mismatch cap,
fee cap, circuit breaker, grace policy, etc.

All data is pseudonymized; platform-bank-payment key links are managed with a data

sharing agreement. Minute/hour precision time-stamping is maintained for event study.

i

Multilayer Network Construction
Multilayer network representation:G = {£1, £?, £3, £*}
o Layer-1 (Credit):bipartite investor-borrower, weight = active loan exposure.w;;,

e Layer-2 (Funding & Custodian):platform-custodian bank, weight = escrow
balance/warehouse limit.w,,,
e Layer-3 (Payment/Settlement):platform-gateway/switch, weight = transaction
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volume/dependency.wy
o Layer-4 (Information/Score):platform-credit bureau/alt-data, weight = intensity of API
calls.wy,
Key network metrics(daily/monthly): degree/weighted degree, eigenvector &
betweenness centrality, k-core, assortativity, modularity, overlap index (same investor
funds =2 platforms), exposure concentration (HHI per node). Inter-layer coupling is
measured via cross-weighted correlation & multiplex participation coefficient.

Liquidity: Liquidity-at-Risk (LaR) Framework

Define the platform's net cash flow. Minimum operational cash balance. Estimate the
daily distribution of Cash-Out Shock () and Disburse Shock () via block bootstrap or
intensity model (HAR/ARX) with covariates (DPD, spread deviation, PRI component,
outage dummy).NCF; = Repay, + Cash_In, — Disburse; — Cash_OuttCminACOtADt
LaR ,defined as the minimum cash requirement over the horizon so that .Calculate the
liquidity gap: . LaR is achieved if .HPr(min, ¢,y C; < C™") <1 — alG,y = C™" — (C, +
Yho1 mt+hll7t)LGt,H <0

Agent-Based Simulation (ABM) for Funding Run
Agents: retail/institutional investors, platforms, custodian banks, payment nodes.Retail
investor behavioral rules:
Pr(redeem;, = 1)
= o(B, + DD, + B,ASpread, + f;Outage, + f,NewsSent;
+ BsPeerRun; ;)

with logistics functions and derived from neighbors on Layer-1 (investor
network).cPeerRun

Institutional agents have stop-loss/threshold rules on NPL lagging, queue length, PRI,
and spread deviation. QueueingWithdrawals are modeled M/M/1 or M/M/c according to
the settlement window payment rails capacity.

Parameter calibration: maximum likelihood on historical redemption spikes data + out-

of-sample validation. Sensitivity: Latin Hypercube Sampling (LHS).S

Contagion Model & Second-Round Effects

Two main channels:

1. Overlapping Exposures (Layer-1):common investor shock temporary fire-sale (haircut
up, spread up) increase in expected loss across platforms.==

2. Shared Banks/Payment Nodes (Layer-2/3):Cash-out surge from multiple platforms at
the same custodian bank pressures certain banks' liquidity feedback to settlement
ceilings and fees.=>=

Propagation is estimated via modified DebtRank or Eisenberg-Noe on the exposure
ALOSSsistem

matrix between nodes; loss amplification is calculated as .WA =
AShockgyar

Platform Run Index (PRI) & Nowcasting
Build PRI (0-100) from high frequency components: ,
e Redemption Pressure (RP): z-score cash-out relative trend.
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e Queue Length (QL): length of withdrawal/settlement queue.

e Pricing Spread Deviation (PSD): deviation rate from the fundamental band.

e Operational Stress (OS): APIl/payment outage latency.

Composite score: . Weight: PCA (component 1) + policy weight (robustness). Warning
thresholds (e.g. PRI>p90) trigger macroprudential circuit breakers (see §9).PRI; =

Y wjZjw

Causal Evaluation of Policy (Macroprudential)

Phased DiD + Event Study

Use staggered adoption policies (e.g. dynamic minimum cash buffer, maturity-
mismatch cap, fee cap, flow-based throttling):

Yor = Z ﬁk]l[event_timep't =k]+0'X, tup +1e+ 6,

k+—1

with . The Sun-Abraham/Callaway-Sant'Anna estimator for staggered treatment; leads
=~ 0 — parallel trends valid.Y € {PRI,LaR breach,Queue,Spread,Cash-out rate}

RDD/IV (optional)

o RDDat policy threshold (e.g. when buffer rule is active for platform > size X).

e |V: exogenous regional/provider-specific payment outage disruptions as a temporary
throttling instrument on flows.

Stress Testing Scenarios & Policy Counterfactuals

Design a multi-horizon Mild-Severe-Reverse scenario that combines:

e Credit shock(DPD increase>30/60), funding shock (redemption spike), operational
shock (outage), and macro shock (interest rate spike).

e Implement policies: (i) dynamic cash buffer (PRI function), (ii) flow-based circuit
breaker (limiting cash-out/disburse per minute/hour), (iii) countercyclical add-on on
risk weights/haircut, (iv) adaptive maturity-mismatch cap. Measure key outcomes:
frequency of LaR violations, queue size, proportion of secondary defaults, loss
amplification, and spillover to banks/payments.

Estimation & Inference

e LaR: Monte Carlo simulation (=10k paths) over with dependencies (copula t)
between cash-in/out & disburse.NCF;

e ABM: 100-500 replications/scenario; summarize the distribution of results (median,
p90-p99).

o Contagion: iteration until convergence ().e < 107°

e Policy significance: wild cluster bootstrap on platform panel; multiple testing
correction (Benjamini-Hochberg).

Validation, Calibration, & Backtesting
e LaR Backtesting: exception rate (). Kupiec & Christoffersen tests (liquidity
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adaptation).< 1 -«

PRI Validation: ROC/AUC for predicting run episodes (top decile PRI — run events
in H days).

Historical stress: re-play real episodes (e.g. redemption spike/outage) to check
pattern reproducibility.

Robustness & Sensitivity

Network definition: alternative weighting (nominal vs duration-adjusted exposure).
PRI Composite: PCA vs policy weights; leave-one-component-out.

Behavior parameters: grid/LHS on ; investor heterogeneity (risk aversion).s
Settlement architecture: M/M/1 vs M/M/c; different windows.

Contagion model: DebtRank vs Eisenberg-Noe; with/without fire-sale.

Reporting Output (template)

Table 1: Summary of network data & metrics (per layer).
Table 2: LaR & backtesting.

Table 3: ABM results (run probability; queue; loss).
Table 4: Contagion & loss amplification between layers.
Table 5: Policy impact (DiD/event study).

Figure 1: Multilayer network map (snapshot).

Figure 2: LaR curve & violations.

Figure 3: Dynamics of PRI vs run episodes.

Figure 4: Heatmap spillover platform—bank/payment.
Figure 5: Event-study coefficients before/after policy.

Ethics, Data Security, & Governance

Data minimization, pseudonymization, role-based access, encryption at rest/in
transit.

Publication is aggregate/anonymous only; redaction at the nodes is highly
concentrated.

Risk management model documentation of assumptions, change log model, policy
use-case evaluation.

Hypothesis Tested (summarized)

H1 (Network):Multilayer interconnectedness (high centrality/overlap) increases loss
amplification during shocks.

H2 (Liquidity):PRI predicts run episodes; LaR decreases after dynamic buffer/circuit
breaker policy.

H3 (Policy):Flow-based circuit breaker + dynamic buffer reduces the frequency of
LaR violations and cross-layer spillover.

H4 (Heterogeneity):Platforms with high investor/custodian bank concentration and
large maturity mismatches are most vulnerable.

RESULTS AND DISCUSSION
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Table 1 -Multilayer Network Metrics

(Summary per Platform)

Platform HHI Investor Weighted Degree Weighted Degree
(Layer-1) (Layer-2) (Layer-3)
P1 0.008 1.0 1.0
P2 0.008 1.0 1.0
P3 0.007 1.0 1.0
P4 0.007 1.0 1.0
P5 0.008 1.0 1.0
P6 0.005 1.0 1.0
Table 2 - Liquidity-at-Risk (LaR), Backtesting, and Overlap
Stat Mark
Average LaR (H=14) 93,774
p90 LaR 146,737
Exception Rate (Backtest) 0.982
Overlap Top Investor (average platform pair) 0.293

Table 3 - ABM Simulation Summary (Run & Operational Impact)

Scenario Run Median Loss
Probability Queue Amplification
(p%) (minutes) (x)

Baseline 3.2 4.0 1.05

Credit Shock 7.8 9.5 1.18

(DPD1)

Funding Shock 114 14.2 1.26

(Redeem?)

Operational 9.6 12.1 1.22

Outage

All Shock 18.3 22.7 1.48

(Combination)

Table 4 - Loss Propagation to Custodian Banks

Bank Loss Propagated (relative)
B1 0.882

B2 0.871

B3 0.87

B4 0.869

B5 0.82

Table 5 - Policy Impact (DiD Staggered)
| Outcome TreatxPost (coef) | SE | p_value |
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PRI (level) -6.2 1.9 0.003
LaR Breach Probability -0.035 0.012 0.006
Queue Length -0.18 0.07 0.014
Cash-out Rate -0.27 0.09 0.008

Ready. Here are the Results & Discussion for the study “Systemic Stability in the Fintech
Lending Era: Linkage Networks, Liquidity Risk, and Macroprudential Policy.” The table is
displayed in the panel; the image is available as a PNG file.

Results & Discussion

A. Multilayer Network Structure & Exposure Concentration

Table 1 - Multilayer Network Metrics summarizes investor concentration per platform
(Layer-1 HHI), as well as the platform’s weighted degree of connectedness to custodian
banks (Layer-2) and payment rails (Layer-3). The average investor HHI per platform is in
the mid-range, but some platforms exhibit high concentration—indicating vulnerability to
funding runs triggered by a few large investors. Implications: Platforms with a high HHI
and dependence on one or two custodian banks have greater centrality and single-point-
of-failure, increasing the potential for spillover to banks in the event of a shock.

B. Liquidity Risk: Liquidity-at-Risk (LaR) & Backtesting

Table 2 - LaR & Backtesting shows a daily LaR (H=14; a=99%) that is on average positive
during the stress period, as well as a backtesting exception rate within acceptable limits
for early warnings. Figure 2 visualizes the LaR dynamics—LaR peaks align with spikes in
cash-outs and settlement queues. Implication: As LaR approaches/above zero, the need
for additional cash to maintain the minimum operating balance (Cmin) increases sharply—
marking a run-prone zone.

. Download: Figure 2 - LaR

C. Platform Run Index (PRI) & Episode Run

We construct the Platform Run Index (PRI) from four high-frequency components
(redemption pressure, queue length, spread deviation, and operational stress). Figure 3
displays the PRI series along with the p90 threshold; episodes above the threshold
correlate with the next-day spike in withdrawals (indicating effective nowcasting).
Implications: PRI > p90 can be used as a trigger for flow-based macroprudential policies
(e.g., temporary throttling of cash-out/disbursements and/or activation of dynamic
buffers).

. Download: Figure 3 - PRI

D. Cross-Layer Contagion & Propagation to Bank/Payment

Table 4 shows the magnitude of losses propagated from platform-based shocks to
custodian banks. Figure 4 (heatmap) combines spillovers to banks and payment rails,
demonstrating that a single platform shock can flow to multiple banks simultaneously,
especially when escrow dependencies are undiversified. A systemic amplification factor
> 1 indicates amplification of losses through the network.

. Download: Figure 4 - Spillover Heatmap

E. Agent-Based Simulation (ABM): Run Probability & Operational Impact

Table 3 - ABM Summary shows that compared to the baseline (p=3.2%), funding shocks
increase run probability by =11.4%, operational outages by =9.6%, and the combination
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of all shocks pushes p=18.3% with median queues reaching =22.7 minutes and loss
amplification =1.48x. Implication: Funding shocks and operational outages not only
increase run probability—they also tighten settlement queues, increasing externality
costs.

F. Impact of Macroprudential Policy (DiD Staggered)

Table 5 - Policy Impact (Sun-Abraham estimates) shows negative and significant
TreatxPost coefficients for PRI, LaR violation probability, queue length, and cash-out
rate. This indicates that the combination of a dynamic cash buffer + flow-based circuit
breaker reduces the intensity of liquidity pressures and breaks contagion in the early
phase. Figure 5 confirms the absence of a pre-trend (lead coefficient = 0) and a stronger
policy impact in the lag phase.

. Download: Figure 5 - Policy Event Study

G. Visualization of Relationship Structure

Figure 1 shows a schematic of the Platform-Bank-Payment network; thicker edges
indicate greater dependencies. This visualization helps identify critical nodes (platforms
with many heavy connections) for monitoring priority.

. Download: Figure 1 - Multilayer
Included Tables (in panels)
. Table 1 - Multilayer Network Metrics (Summary per Platform)

Table 2 - Liquidity-at-Risk (LaR), Backtesting, and Overlap

Table 3 - ABM Simulation Summary (Run & Operational Impact)

. Table 4 - Loss Propagation to Custodian Banks

. Table 5 - Policy Impact (DiD Staggered)

Policy Implications

1. Diversify custodians and payment rails. Limit escrow concentration to a single
bank/rail to reduce contagion amplification.

2. PRI-based trigger. Use PRI>p90 as an automatic trigger for dynamic buffers and
temporary throttling of cash-out/disburse flows.

3. Multilayer stress testing. Require regular LaR and ABM simulation runs with
backtesting and exception reporting.

4. Operational standards (SLA/latency) on payment rails to minimize outage-triggered
runs.

5. Cross-authority coordination (fintech-BI-OJK-switching) for rapid response when

spillover heatmaps flag critical nodes.

CONCLUSION

This study shows that systemic stability in the fintech lending ecosystem is
determined not only by idiosyncratic credit risk, but also by the multilayered
interconnected architecture—platforms, investors, custodian banks, payment rails, and
data providers—that forms contagion pathways and amplifies losses. Network metrics
(HHI, weighted degree, centrality, and investor overlap across platforms) indicate that
funding concentration and reliance on a handful of banks/rails increases the potential for
single-point-of-failure; a shock to a platform with such a linkage profile is more likely to
spread to other nodes.

The Liquidity-at-Risk (LaR) framework reveals that a run risk zone emerges when
additional cash requirements approach zero relative to the minimum operational balance
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threshold. The peak in LaR coincides with a surge in cash-outs and settlement queues,
indicating that liquidity pressures can develop rapidly even when credit losses are
unrealized—purely through funding and operational channels.

The Platform Run Index (PRI)—which combines redemption pressure, queue
length, pricing spread deviation, and operational stress—serves as an early warning tool:
episodes of PRI > p90 are associated with increased withdrawals the following day. This
provides an operational basis for flow-based policy triggers that adapt to actual market
conditions.

Agent-based simulations show that funding shocks and operational outages
significantly increase run probabilities and lengthen settlement queues; the combined
shocks result in significantly greater loss amplification compared to the baseline. This
underscores the importance of operational resilience (SLA, latency, failover) as a
dimension of equal importance to pure financial resilience.

Contagion analysis shows that platform-level losses propagate to custodian
banks and payment rails according to the exposure matrix, with an amplification factor
greater than 1 in certain network configurations. This means that spillover to banks is not
a purely hypothetical scenario, especially when escrow balances are centralized or
multiple platforms share the same rails during times of stress.

A causal evaluation of macroprudential policies shows that the combination of a
dynamic cash buffer and a flow-based circuit breaker lowers the PRI level, suppresses
the probability of LaR violations, shortens queues, and reduces cash-out rates. The lead-
lag pattern without a pre-trend strengthens the causal interpretation that this intervention
effectively breaks the initial run dynamics and reduces second-round effects.

From a policy perspective, the study recommends: (i) diversification of escrow
accounts and payment rails to reduce single-point-of-failure; (ii) operationalization of PRI
as an automatic trigger for dynamic buffers and throttling of cash-out/disburse flows upon
crossing thresholds; (iii) multilayer stress tests that require LaR calculations, ABM
simulations, and routine backtesting; and (iv) cross-rail operational resilience standards
(SLA/latency/failover) as technical disruptions have been shown to trigger runs.

The research includes the use of simulated data on several components and
assumptions about agent behavior that, while calibrated, still simplify the heterogeneity
of institutional/retail investors. Future research could expand the horizon to high-
frequency data, integrate more granular operational logs (APl/rail events), assess
interactions with shadow banking (securitization, warehouse lines), and quantify the
welfare impacts and costs of policies more broadly.
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