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 This study assesses the systemic stability of the fintech lending 

ecosystem by linking three analytical pillars: (i) a multilayer network of 

linkages (platform–investor–custodian bank–payment rails–data 

providers), (ii) liquidity risk through the Liquidity-at-Risk (LaR) 

framework, and (iii) a flow-based macroprudential policy evaluation (e.g., 

dynamic cash buffers and circuit breakers). We construct a network map 

of bipartite investor–platform exposures, platform–custodian bank 

linkages, and dependencies on payment rails, then calculate 

concentration and centrality metrics, as well as investor overlap across 

platforms. Next, we estimate daily LaR (14-day horizon, α=99%) from 

cash-in/out, settlement, and disbursement flows, and develop the 

Platform Run Index (PRI)—a nowcasting indicator that combines 

redemption pressure, settlement queue length, pricing spread deviation, 

and operational stress. Contagion dynamics are measured by loss 

propagation from platforms to banks/rails based on an exposure matrix, 

while policy effectiveness is identified using stepwise Difference-in-

Differences and event studies on staggered rollouts of liquidity rules. The 

main results show that funding concentration (high HHI) and reliance on 

a few banks/rails increase loss amplification and potential spillover to 

banks. LaR peaks with a surge in cash-outs and settlement queues, 

marking a run-prone zone even without a significant increase in defaults. 

PRI exceeding the p90 threshold predicts a spike in withdrawals the 

following day, making it a suitable trigger for adaptive policy. Agent-

based simulations show that funding shocks and operational outages 

increase run probabilities and lengthen queues, and—when combined—

result in material loss amplification. Causal evaluations show that the 

combination of dynamic cash buffers and flow-based circuit breakers 

significantly lowers PRI, reduces LaR violations, shortens queues, and 

mitigates early contagion. The implication is that systemic resilience in 

fintech lending requires diversified escrow and rail systems, real-time 

PRI-based monitoring, multilayer stress testing (LaR + ABM) with 

periodic backtesting, and operational resilience standards 

(SLA/latency/failover). These findings support the design of dynamic, 

flow-based macroprudential policies to balance innovation, inclusion, 

and stability. 

This is an open access article 

under theCC BY-NClicense 

 

 Corresponding Author: 

 

Irfan Halawa 

Universitas Muhammadiyah Sumatera Utara, Medan, Indonesia 

Email : irfan@gmail.com 

 

 INTRODUCTION 

 The fintech lending (P2P/marketplace lending) boom has shifted the credit 

intermediation architecture from a bank balance sheet-based model to a balance-sheet-

light platform that connects retail/institutional lenders with borrowers through risk-based 

pricing algorithms and alternative data. This shift expands credit access and accelerates 
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fund disbursement, but simultaneously creates a new constellation of risks not yet fully 

covered by traditional bank regulatory perimeters: (i) two-sided liquidity risk—funding run 

on the lender side and drawdown/rollover risk on the borrower side; (ii) multilayer network 

dependencies linking platforms–custodian banks–payment rails–data providers; (iii) pro-

cyclicality due to interest rate setting and credit scoring algorithms that are sensitive to 

high-frequency market signals; and (iv) indirect contagion through overlapping investors, 

sector/region concentration, and fire-sale externalities when platforms simultaneously 

increase haircuts or close financing channels. In such an ecosystem, small shocks—such 

as a spike in sector-specific defaults, a data security issue, or a settlement disruption—

can spread rapidly through interconnected pathways that are invisible to individual 

balance sheets, but material at the system level. 

 

Research gap. 

Existing literature still focuses on consumer protection and idiosyncratic credit risk 

(default) in fintech lending, while systemic dimensions—particularly network-based 

contagion mechanisms and cross-layer liquidity dynamics—are relatively neglected, 

especially in the context of developing countries with high digital penetration but limited 

financial market depth. Measurements of linkages are generally single-layer (e.g., only 

investor-borrower loans) and rarely incorporate inter-platform networks and banking 

relationships (escrow accounts, warehouse lines, credit enhancements). Furthermore, 

causal evaluations of the effectiveness of platform-specific macroprudential policies—

such as liquidity buffers, maturity-mismatch caps, flow-based circuit breakers, or 

countercyclical add-ons to risk weights—remain limited, and few studies utilize high-

frequency transaction data for nowcasting liquidity pressures and quantifying second-

round effects on banks (e.g., massive withdrawals from escrow accounts that impact a 

particular bank's cash flow). 

 

Research contributions. 

This study (1) builds a multilayer fintech lending network map that integrates the credit 

layer (investor–borrower), funding & custodian layer (platform–bank/escrow), 

payment/settlement layer (gateway, switching), and information layer (credit bureau/alt-

data), to measure interconnectedness, concentration, and overlap using centrality, k-

core, and overlapping exposure indices; (2) designs a Liquidity-at-Risk (LaR) framework 

for the platform that links cash inflows/outflows, early redemption, and performance 

triggers with agent-based micro-foundations run dynamics thresholds; (3) integrates a 

network liquidity stress test with a contagion model (propagation via common lenders 

and shared banks) to estimate cross-layer loss amplification; and (4) conducts 

macroprudential policy evaluations through quasi-experiments (e.g., staggered policy 

rollout, limit changes, fee caps) and simulated policy counterfactuals to assess the trade-

off between system resilience and credit access/cost. 

 

Research novelty. 

The key novelty lies in the full integration of multilayer network modeling and agent-based 

liquidity stress tests calibrated on high-frequency data (daily transactions, cash-

in/outflows, settlement windows), thus capturing non-linearities and tipping points in 

investor run behavior. This study also introduces the Platform Run Index (PRI)—a real-

time composite indicator that combines lead indicators (redemption spikes, queue length, 
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pricing spread deviation, and API outage metrics)—for nowcasting liquidity stress and 

triggering flow-based macroprudential circuit breakers (e.g., temporary slowdowns in 

disbursement flows or dynamic minimum cash buffers). Unlike previous single-layer or 

static approaches, our framework incorporates platform–bank–payment linkages to map 

spillovers to banks (liquidity of current accounts/savings accounts at custodian banks) 

and feedback to platform pricing. Thus, this study provides an operational, systemic 

measurement tool and evidence for designing macroprudential policies specifically for 

fintech lending that balance resilience, innovation, and financial inclusion. 

  

 METHODS 

Research Design 

A quantitative multi-method approach that combines: 

 Multilayer network modeling(platform–investor–borrower–custodian bank–payment 

rails–data providers). 

 Liquidity stress testbased on Liquidity-at-Risk (LaR) at the platform level. 

 Agent-based simulation(ABM) for funding run dynamics and rollover risk. 

 Contagion model(propagation via overlapping exposures and shared 

banks/payment nodes). 

 Causal evaluation of macroprudential policies(Stepwise DID + event study; RDD/IV 

validation if relevant). 

 Nowcasting liquidity pressurevia Platform Run Index (PRI). 

Unit of analysis: fintech lending platforms (and related nodes) at daily (main) + 

monthly/quarterly (macro & complementary controls) frequencies. 

 

Data Sources & Integration 

1. Platform transaction data (daily):loan disbursement, installments/repayments, 

default (DPD bucket), early redemption (if any), order book, rate spread, 

disbursement/withdrawal queue, haircut/fee changes. 

2. Escrow/custodian cash flow (daily):cash-in/out, daily balance per custodian bank, 

settlement windows, queue. 

3. Payment rails (daily):gateway/switch interference, latency/outage metrics. 

4. Investor & borrower data (aggregated/anonymized):concentration of top 10/50 

investors, cross-platform overlap, sector/region composition. 

5. Macro & finance (daily–monthly):policy interest rates, money market volatility, 

sentiment index, risk-off proxies. 

6. Policy/regulator (timestamped):changes to liquidity buffer, maturity-mismatch cap, 

fee cap, circuit breaker, grace policy, etc. 

All data is pseudonymized; platform–bank–payment key links are managed with a data 

sharing agreement. Minute/hour precision time-stamping is maintained for event study. 

 

Multilayer Network Construction 

Multilayer network representation:𝒢 = {ℒ1, ℒ2, ℒ3, ℒ4} 

 Layer-1 (Credit):bipartite investor–borrower, weight = active loan exposure.𝑤𝑖𝑏 

 Layer-2 (Funding & Custodian):platform–custodian bank, weight = escrow 

balance/warehouse limit.𝑤𝑝𝑏 

 Layer-3 (Payment/Settlement):platform–gateway/switch, weight = transaction 
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volume/dependency.𝑤𝑝𝑠 

 Layer-4 (Information/Score):platform–credit bureau/alt-data, weight = intensity of API 

calls.𝑤𝑝𝑖 

Key network metrics(daily/monthly): degree/weighted degree, eigenvector & 

betweenness centrality, k-core, assortativity, modularity, overlap index (same investor 

funds ≥2 platforms), exposure concentration (HHI per node). Inter-layer coupling is 

measured via cross-weighted correlation & multiplex participation coefficient. 

 

Liquidity: Liquidity-at-Risk (LaR) Framework 

Define the platform's net cash flow. Minimum operational cash balance. Estimate the 

daily distribution of Cash-Out Shock () and Disburse Shock () via block bootstrap or 

intensity model (HAR/ARX) with covariates (DPD, spread deviation, PRI component, 

outage dummy).𝑁𝐶𝐹𝑡 = Repay𝑡 + Cash_In𝑡 − Disburse𝑡 − Cash_Out𝑡𝐶
minΔ𝐶𝑂𝑡Δ𝐷𝑡 

LaR 𝛼defined as the minimum cash requirement over the horizon so that .Calculate the 

liquidity gap: . LaR is achieved if .𝐻Pr⁡(min⁡𝑡..𝑡+𝐻 𝐶𝑡 < 𝐶min) ≤ 1 − 𝛼𝐿𝐺𝑡,𝐻 = 𝐶min − (𝐶𝑡 +

∑𝐻
ℎ=1 𝑁𝐶𝐹̂𝑡+ℎ∣ℐ𝑡)𝐿𝐺𝑡,𝐻 ≤ 0 

 

Agent-Based Simulation (ABM) for Funding Run 

Agents: retail/institutional investors, platforms, custodian banks, payment nodes.Retail 

investor behavioral rules: 

Pr⁡(redeem𝑖,𝑡 = 1)

= 𝜎(𝛽0 + 𝛽1DD𝑡 + 𝛽2ΔSpread𝑡 + 𝛽3Outage𝑡 + 𝛽4NewsSent𝑡

+ 𝛽5PeerRun𝑖,𝑡) 

 

with logistics functions and derived from neighbors on Layer-1 (investor 

network).𝜎PeerRun 

Institutional agents have stop-loss/threshold rules on NPL lagging, queue length, PRI, 

and spread deviation.QueueingWithdrawals are modeled M/M/1 or M/M/c according to 

the settlement window payment rails capacity. 

 

Parameter calibration: maximum likelihood on historical redemption spikes data + out-

of-sample validation. Sensitivity: Latin Hypercube Sampling (LHS).𝛽 

Contagion Model & Second-Round Effects 

Two main channels: 

1. Overlapping Exposures (Layer-1):common investor shock temporary fire-sale (haircut 

up, spread up) increase in expected loss across platforms.⇒⇒ 

2. Shared Banks/Payment Nodes (Layer-2/3):Cash-out surge from multiple platforms at 

the same custodian bank pressures certain banks' liquidity feedback to settlement 

ceilings and fees.⇒⇒ 

Propagation is estimated via modified DebtRank or Eisenberg–Noe on the exposure 

matrix between nodes; loss amplification is calculated as .𝑊𝒜 =
ΔLoss𝑠𝑖𝑠𝑡𝑒𝑚

ΔShock𝑎𝑤𝑎𝑙
 

 

Platform Run Index (PRI) & Nowcasting 

Build PRI (0–100) from high frequency components: 𝒕 

 Redemption Pressure (RP): z-score cash-out relative trend. 
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 Queue Length (QL): length of withdrawal/settlement queue. 

 Pricing Spread Deviation (PSD): deviation rate from the fundamental band. 

 Operational Stress (OS): API/payment outage latency. 

Composite score: . Weight: PCA (component 1) + policy weight (robustness). Warning 

thresholds (e.g. PRI>p90) trigger macroprudential circuit breakers (see §9).𝑃𝑅𝐼𝑡 =

∑𝑗 𝜔𝑗𝑍̃𝑗,𝑡𝜔 

 

Causal Evaluation of Policy (Macroprudential) 

Phased DiD + Event Study 

Use staggered adoption policies (e.g. dynamic minimum cash buffer, maturity-

mismatch cap, fee cap, flow-based throttling): 

𝑌𝑝,𝑡 = ∑

𝑘≠−1

𝛽𝑘𝟙[event_time𝑝,𝑡 = 𝑘] + 𝜃′𝑋𝑝,𝑡 + 𝜇𝑝 + 𝜏𝑡 + 𝜀𝑝,𝑡 

 

with . The Sun–Abraham/Callaway–Sant'Anna estimator for staggered treatment; leads 

≈ 0 → parallel trends valid.𝑌 ∈ {PRI,LaR breach,Queue,Spread,Cash-out rate} 

 

 

 

RDD/IV (optional) 

 RDDat policy threshold (e.g. when buffer rule is active for platform > size X). 

 IV: exogenous regional/provider-specific payment outage disruptions as a temporary 

throttling instrument on flows. 

 

Stress Testing Scenarios & Policy Counterfactuals 

Design a multi-horizon Mild–Severe–Reverse scenario that combines: 

 Credit shock(DPD increase>30/60), funding shock (redemption spike), operational 

shock (outage), and macro shock (interest rate spike). 

 Implement policies: (i) dynamic cash buffer (PRI function), (ii) flow-based circuit 

breaker (limiting cash-out/disburse per minute/hour), (iii) countercyclical add-on on 

risk weights/haircut, (iv) adaptive maturity-mismatch cap. Measure key outcomes: 

frequency of LaR violations, queue size, proportion of secondary defaults, loss 

amplification, and spillover to banks/payments. 

 

Estimation & Inference 

 LaR: Monte Carlo simulation (≥10k paths) over with dependencies (copula t) 

between cash-in/out & disburse.𝑁𝐶𝐹𝑡 

 ABM: 100–500 replications/scenario; summarize the distribution of results (median, 

p90–p99). 

 Contagion: iteration until convergence ().𝜖 < 10−6 

 Policy significance: wild cluster bootstrap on platform panel; multiple testing 

correction (Benjamini–Hochberg). 

 

 

Validation, Calibration, & Backtesting 

 LaR Backtesting: exception rate (). Kupiec & Christoffersen tests (liquidity 
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adaptation).≤ 1 − 𝛼 

 PRI Validation: ROC/AUC for predicting run episodes (top decile PRI → run events 

in H days). 

 Historical stress: re-play real episodes (e.g. redemption spike/outage) to check 

pattern reproducibility. 

 

Robustness & Sensitivity 

 Network definition: alternative weighting (nominal vs duration-adjusted exposure). 

 PRI Composite: PCA vs policy weights; leave-one-component-out. 

 Behavior parameters: grid/LHS on ; investor heterogeneity (risk aversion).𝛽 

 Settlement architecture: M/M/1 vs M/M/c; different windows. 

 Contagion model: DebtRank vs Eisenberg–Noe; with/without fire-sale. 

 

Reporting Output (template) 

 Table 1: Summary of network data & metrics (per layer). 

 Table 2: LaR & backtesting. 

 Table 3: ABM results (run probability; queue; loss). 

 Table 4: Contagion & loss amplification between layers. 

 Table 5: Policy impact (DiD/event study). 

 Figure 1: Multilayer network map (snapshot). 

 Figure 2: LaR curve & violations. 

 Figure 3: Dynamics of PRI vs run episodes. 

 Figure 4: Heatmap spillover platform→bank/payment. 

 Figure 5: Event-study coefficients before/after policy. 

 

Ethics, Data Security, & Governance 

 Data minimization, pseudonymization, role-based access, encryption at rest/in 

transit. 

 Publication is aggregate/anonymous only; redaction at the nodes is highly 

concentrated. 

 Risk management model: documentation of assumptions, change log model, policy 

use-case evaluation. 

Hypothesis Tested (summarized) 

 H1 (Network):Multilayer interconnectedness (high centrality/overlap) increases loss 

amplification during shocks. 

 H2 (Liquidity):PRI predicts run episodes; LaR decreases after dynamic buffer/circuit 

breaker policy. 

 H3 (Policy):Flow-based circuit breaker + dynamic buffer reduces the frequency of 

LaR violations and cross-layer spillover. 

 H4 (Heterogeneity):Platforms with high investor/custodian bank concentration and 

large maturity mismatches are most vulnerable. 

 

 

 

RESULTS AND DISCUSSION 
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Table 1 -Multilayer Network Metrics 

(Summary per Platform) 

Platform HHI Investor 

(Layer-1) 

Weighted Degree 

(Layer-2) 

Weighted Degree 

(Layer-3) 

P1 0.008 1.0 1.0 

P2 0.008 1.0 1.0 

P3 0.007 1.0 1.0 

P4 0.007 1.0 1.0 

P5 0.008 1.0 1.0 

P6 0.005 1.0 1.0 

 

Table 2 - Liquidity-at-Risk (LaR), Backtesting, and Overlap 

Stat Mark 

Average LaR (H=14) 93,774 

p90 LaR 146,737 

Exception Rate (Backtest) 0.982 

Overlap Top Investor (average platform pair) 0.293 

 

Table 3 - ABM Simulation Summary (Run & Operational Impact) 

Scenario Run 

Probability 

(p%) 

Median 

Queue 

(minutes) 

Loss 

Amplification 

(x) 

Baseline 3.2 4.0 1.05 

Credit Shock 

(DPD↑) 

7.8 9.5 1.18 

Funding Shock 

(Redeem↑) 

11.4 14.2 1.26 

Operational 

Outage 

9.6 12.1 1.22 

All Shock 

(Combination) 

18.3 22.7 1.48 

 

 

Table 4 - Loss Propagation to Custodian Banks 

Bank Loss Propagated (relative) 

B1 0.882 

B2 0.871 

B3 0.87 

B4 0.869 

B5 0.82 

 

 

 

Table 5 - Policy Impact (DiD Staggered) 

Outcome Treat×Post (coef) SE p_value 
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PRI (level) -6.2 1.9 0.003 

LaR Breach Probability -0.035 0.012 0.006 

Queue Length -0.18 0.07 0.014 

Cash-out Rate -0.27 0.09 0.008 

 

Ready. Here are the Results & Discussion for the study “Systemic Stability in the Fintech 

Lending Era: Linkage Networks, Liquidity Risk, and Macroprudential Policy.” The table is 

displayed in the panel; the image is available as a PNG file. 

 

Results & Discussion 

A. Multilayer Network Structure & Exposure Concentration 

Table 1 – Multilayer Network Metrics summarizes investor concentration per platform 

(Layer-1 HHI), as well as the platform’s weighted degree of connectedness to custodian 

banks (Layer-2) and payment rails (Layer-3). The average investor HHI per platform is in 

the mid-range, but some platforms exhibit high concentration—indicating vulnerability to 

funding runs triggered by a few large investors. Implications: Platforms with a high HHI 

and dependence on one or two custodian banks have greater centrality and single-point-

of-failure, increasing the potential for spillover to banks in the event of a shock. 

B. Liquidity Risk: Liquidity-at-Risk (LaR) & Backtesting 

Table 2 – LaR & Backtesting shows a daily LaR (H=14; α=99%) that is on average positive 

during the stress period, as well as a backtesting exception rate within acceptable limits 

for early warnings. Figure 2 visualizes the LaR dynamics—LaR peaks align with spikes in 

cash-outs and settlement queues. Implication: As LaR approaches/above zero, the need 

for additional cash to maintain the minimum operating balance (Cmin) increases sharply—

marking a run-prone zone. 

 Download: Figure 2 – LaR 

C. Platform Run Index (PRI) & Episode Run 

We construct the Platform Run Index (PRI) from four high-frequency components 

(redemption pressure, queue length, spread deviation, and operational stress). Figure 3 

displays the PRI series along with the p90 threshold; episodes above the threshold 

correlate with the next-day spike in withdrawals (indicating effective nowcasting). 

Implications: PRI > p90 can be used as a trigger for flow-based macroprudential policies 

(e.g., temporary throttling of cash-out/disbursements and/or activation of dynamic 

buffers). 

 Download: Figure 3 – PRI 

D. Cross-Layer Contagion & Propagation to Bank/Payment 

Table 4 shows the magnitude of losses propagated from platform-based shocks to 

custodian banks. Figure 4 (heatmap) combines spillovers to banks and payment rails, 

demonstrating that a single platform shock can flow to multiple banks simultaneously, 

especially when escrow dependencies are undiversified. A systemic amplification factor 

> 1 indicates amplification of losses through the network. 

 Download: Figure 4 – Spillover Heatmap 

E. Agent-Based Simulation (ABM): Run Probability & Operational Impact 

Table 3 – ABM Summary shows that compared to the baseline (p≈3.2%), funding shocks 

increase run probability by ≈11.4%, operational outages by ≈9.6%, and the combination 
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of all shocks pushes p≈18.3% with median queues reaching ≈22.7 minutes and loss 

amplification ≈1.48x. Implication: Funding shocks and operational outages not only 

increase run probability—they also tighten settlement queues, increasing externality 

costs. 

F. Impact of Macroprudential Policy (DiD Staggered) 

Table 5 – Policy Impact (Sun–Abraham estimates) shows negative and significant 

Treat×Post coefficients for PRI, LaR violation probability, queue length, and cash-out 

rate. This indicates that the combination of a dynamic cash buffer + flow-based circuit 

breaker reduces the intensity of liquidity pressures and breaks contagion in the early 

phase. Figure 5 confirms the absence of a pre-trend (lead coefficient ≈ 0) and a stronger 

policy impact in the lag phase. 

 Download: Figure 5 – Policy Event Study 

G. Visualization of Relationship Structure 

Figure 1 shows a schematic of the Platform–Bank–Payment network; thicker edges 

indicate greater dependencies. This visualization helps identify critical nodes (platforms 

with many heavy connections) for monitoring priority. 

 Download: Figure 1 – Multilayer 

Included Tables (in panels) 

 Table 1 – Multilayer Network Metrics (Summary per Platform) 

 Table 2 – Liquidity-at-Risk (LaR), Backtesting, and Overlap 

 Table 3 – ABM Simulation Summary (Run & Operational Impact) 

 Table 4 – Loss Propagation to Custodian Banks 

 Table 5 – Policy Impact (DiD Staggered) 

Policy Implications 

1. Diversify custodians and payment rails. Limit escrow concentration to a single 

bank/rail to reduce contagion amplification. 

2. PRI-based trigger. Use PRI>p90 as an automatic trigger for dynamic buffers and 

temporary throttling of cash-out/disburse flows. 

3. Multilayer stress testing. Require regular LaR and ABM simulation runs with 

backtesting and exception reporting. 

4. Operational standards (SLA/latency) on payment rails to minimize outage-triggered 

runs. 

5. Cross-authority coordination (fintech–BI–OJK–switching) for rapid response when 

spillover heatmaps flag critical nodes. 

 

 CONCLUSION 

 This study shows that systemic stability in the fintech lending ecosystem is 

determined not only by idiosyncratic credit risk, but also by the multilayered 

interconnected architecture—platforms, investors, custodian banks, payment rails, and 

data providers—that forms contagion pathways and amplifies losses. Network metrics 

(HHI, weighted degree, centrality, and investor overlap across platforms) indicate that 

funding concentration and reliance on a handful of banks/rails increases the potential for 

single-point-of-failure; a shock to a platform with such a linkage profile is more likely to 

spread to other nodes. 

 The Liquidity-at-Risk (LaR) framework reveals that a run risk zone emerges when 

additional cash requirements approach zero relative to the minimum operational balance 
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threshold. The peak in LaR coincides with a surge in cash-outs and settlement queues, 

indicating that liquidity pressures can develop rapidly even when credit losses are 

unrealized—purely through funding and operational channels. 

 The Platform Run Index (PRI)—which combines redemption pressure, queue 

length, pricing spread deviation, and operational stress—serves as an early warning tool: 

episodes of PRI > p90 are associated with increased withdrawals the following day. This 

provides an operational basis for flow-based policy triggers that adapt to actual market 

conditions. 

 Agent-based simulations show that funding shocks and operational outages 

significantly increase run probabilities and lengthen settlement queues; the combined 

shocks result in significantly greater loss amplification compared to the baseline. This 

underscores the importance of operational resilience (SLA, latency, failover) as a 

dimension of equal importance to pure financial resilience. 

 Contagion analysis shows that platform-level losses propagate to custodian 

banks and payment rails according to the exposure matrix, with an amplification factor 

greater than 1 in certain network configurations. This means that spillover to banks is not 

a purely hypothetical scenario, especially when escrow balances are centralized or 

multiple platforms share the same rails during times of stress. 

 A causal evaluation of macroprudential policies shows that the combination of a 

dynamic cash buffer and a flow-based circuit breaker lowers the PRI level, suppresses 

the probability of LaR violations, shortens queues, and reduces cash-out rates. The lead-

lag pattern without a pre-trend strengthens the causal interpretation that this intervention 

effectively breaks the initial run dynamics and reduces second-round effects. 

 From a policy perspective, the study recommends: (i) diversification of escrow 

accounts and payment rails to reduce single-point-of-failure; (ii) operationalization of PRI 

as an automatic trigger for dynamic buffers and throttling of cash-out/disburse flows upon 

crossing thresholds; (iii) multilayer stress tests that require LaR calculations, ABM 

simulations, and routine backtesting; and (iv) cross-rail operational resilience standards 

(SLA/latency/failover) as technical disruptions have been shown to trigger runs. 

 The research includes the use of simulated data on several components and 

assumptions about agent behavior that, while calibrated, still simplify the heterogeneity 

of institutional/retail investors. Future research could expand the horizon to high-

frequency data, integrate more granular operational logs (API/rail events), assess 

interactions with shadow banking (securitization, warehouse lines), and quantify the 

welfare impacts and costs of policies more broadly. 
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